联系我们
意见反馈

关注公众号

获得最新科研资讯

新型显示技术实验室

简介 致力于前沿显示技术方面的研究,包括Micro-LED显示、量子点显示等

分享到
实验室简介

 

 

欢迎访问新型显示技术实验室!新型显示技术实验室成立于2017年4月,由广东省科学院半导体研究所学科带头人龚政教授创立。该实验室主要从事新型显示材料、器件及应用方面的研究。面向显示领域巨大的市场需求和产业化需求,研发基于Micro-LED、量子点等材料和器件的新一代显示技术,以满足高分辨率、低功耗、长寿命、响应速度快的一些应用场景:如可穿戴电子消费品、智能眼镜、智能手表、虚拟现实头盔、高清电视等。

本实验室诚邀海内外各级人才加盟,包括资深研究员/副研究员/青年研究员/助理研究员等岗位若干。

欢迎与我联系,招聘具体信息参见:职位招聘

 

代表性论文

  1. “Wafer-scale Patterning of High-resolution Quantum Dot Films with a Thickness over 10 µm for Improved Color Conversion“,Nanoscale, 2023,15, 18317-18327, https://doi.org/10.1039/D3NR04615J
  2. "Insight into the evolution of electrical properties for Schottky-barrier IGZO thin-film transistors with Cu-based Schottky contacts", Appl. Phys. Lett. 123, 103503 (2023) https://doi.org/10.1063/5.0159184
  3. “Noble‐Metal‐Free,Polarity‐Switchable IGZO Schottky Barrier Diodes”,IEEE Transactions on Electron Devices,2023, doi:10.1109/TED.2023.3267755  
  4. “High-Performance Sputter-Prepared Metal-Oxide Thin-Film Transistors Based on Solution-Processed Targets”, IEEE Electron Device Letters, 2023. Doi: 10.1109/LED.2022.3224920. https://ieeexplore.ieee.org/document/9964213
  5. “Laser-based Micro/Nano-Processing Techniques for Microscale LEDs and Full-color Displays”, Advanced Materials Technologies, 2022, 2200949. https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202200949 
  6. "Transfer Printed, Vertical GaN-on-Silicon Micro-LED Arrays With Individually Addressable Cathodes", IEEE Transactions on Electron Devices, 2022, Doi:10.1109/TED.2022.3202152.  https://ieeexplore.ieee.org/document/9882009.
  7.  "Fabrication of Schottky Barrier Oxide Semiconductor Thin Film Transistors Via a Simple AluminiumReaction Method", IEEE Electron Device Letters, 2022 ,Doi: 10.1109/LED.2022.3204937. https://ieeexplore.ieee.org/document/9881597
  8. “Large-scale programmable assembly of Micro-components for advanced electronics via light-regulated adhesion and polymer growth”,npj Flexible Electronics 6, 44 (2022)
  9. “High-Performance Inorganically Connected CuInSe2 Nanocrystal Thin-Film Transistors and Integrated Circuits Based on the Solution Process of Colloidal Synthesis, Ligand Exchange, and Surface Treatment”,Chemistry of Materials,33, 8775−8785(2021)
  10. “Effective defect passivation of CsPbBr3 quantum dots using gallium cations toward the fabrication of bright perovskite LEDs”,Journal of Materials Chemistry C, 9(34), 11324–11330(2021). 
  11.  [Invited Review] Layer-Scale and Chip-Scale Transfer Techniques for Functional Devices and Systems: A Review,Nanomaterials 11 (4), 842 (2021)
  12.  Wafer-Scale Micro-LEDs Transferred onto an Adhesive Film for Planar and Flexible Displays, Advanced Materials Technologies,  2000549(2020).
  13. 【Invited】: Applications and challenges of Micro-pixelated light-emitting diode arrays,SID Symposium Digest of Technical Papers ,2018
  14. "Direct LED writing of submicron resist patterns: Towards the fabrication of individually-addressable InGaN submicron stripe-shaped LED arrays",Nano Research 7 (12), 1849-1860(2014)
  15. "Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers", Lasers & Photonics Review. 7, No. 6, 1065–1078 (2013)  
  16.  "CMOS-controlled color-tunable smart display", IEEE Photonics Journal 4,1639(2012)  
  17. "Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes", Applied Physics Letters 101 (23), 231110(2012)
  18. "Hybrid organic/GaN photonic crystal light-emitting diode", Applied Physics Letters 101 (14), 141122, 2012
  19.  Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes", Journal of Applied Physics 107 (2010) 013103 
  20. Matrix-addressable micropixellated InGaN light-emitting diodes with uniform emission and increased light output", IEEE Transactions on Electron Devices 54 (2007) 2650-2658. 
  21. "A Vertically Integrated CMOS Microsystem for Time-Resolved Fluorescence Analysis", IEEE Transactions on Biomedical Circuits and Systems 4 (2010) 437-444. 
  22. "High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array", IEEE Photonics Technology Letters 22 (2010) 1346-1348. 
  23. "Microstripe-array InGaN light-emitting diodes with individually addressable elements", IEEE Photonics Technology Letters 18 (2006) 1681-1683. 
  24. "Formation of GaAs/AlGaAs and InGaAs/GaAs nanorings by droplet molecular-beam epitaxy", Applied Physics Letters 87 (2005)093116.
  25. "Surface morphology control of strained InAs/GaAs(331)A films: From nanowires to island-pit pairs", Applied Physics Letters 86 (2005)013104.
  26. "Complex quantum ring structures formed by droplet epitaxy", Applied Physics Letters  89 (2006)031921.

 

 

 

关于量子点图案化的论文近期发表在nanoscale!

原文链接:https://doi.org/10.1039/D3NR04615J

 

Wafer-scale Patterning of High-resolution Quantum Dot Films with a Thickness over 10 µm for Improved Color Conversion

Shenghan Zou,   Yuzhi Li  and  Zheng Gong  

Abstract

Quantum dots (QDs) are promising color conversion materials for efficient full-color micro-LED display owing to their high color purity and wide color gamut. However, achieving high resolution QD patterns with enough thickness for efficient color conversion is challenging. Here, we demonstrate a facile and compatible approach by combining replicate molding, plasma etching and transfer printing to produce QD patterns with sufficient thickness over ten micrometers in a wide range of resolutions. Our technique can remarkably simplify the preparation of QD inks and minimize optical damages to QD materials. The pixel resolution and thickness of QD patterns are controllable by well defining the microstructures of molding template and the etching process. The transfer printing process allows QD patterns to be assembled sequentially onto a receiving substrate, which will further improve the original pixel resolution and avoid repetitive optical damages to QDs during the patterning process. Consequently, various QD patterns can be fabricated in this work, including perovskite quantum dot (PQD) patterns with a pixel resolution up to 1270 ppi and maximum thickness up to 19.74 μm, a wafer-scale high resolution PQD pattern with sufficient thickness on a flexible substrate, and a dual-color pattern comprised of green PQDs and red CdSe QDs. Furthermore, those fabricated QD films with thickness over 10 μm show improved color conversion when integrated onto a blue micro-LED, revealing the potential of our technique for full-color micro-LED displays.

 

恭喜李育智博士获得2023年国自然科学青年基金资助

近日,基金委发布了国自然科学青年基金资助的名单,我课题组李育智博士在名单之列。恭喜李育智博士!

Micro-LED显示系统及应用

Micro-LED技术在近十几年来随着GaN蓝光LED芯片技术逐渐成熟而发展起来,并在最近开始引起人们广泛的关注。Micro-LED作为新一代显示技术,其高亮度、高可靠性及反应时间快、低耗电等特点,在可穿戴、柔性显示、透明显示、车载显示等领域具有极广阔的应用前景。这项新技术已陆续吸引了众多跨国公司积极投入。例如,2014 年苹果斥资 7亿美金收购了微LED 屏幕技术公司 LuxVue;2016年,Facebook收购了英国mLED; 2017年,Google 注资瑞典公司Glo,发展Micro-LED全彩技术;2017年末,三星展出基于Micro-LED的巨型电视拼接墙(准确的讲是小间距LED电视),把Micro-LED 显示技术的商业化发展推进到了一个新的高度。

本方向主要开发高分辨率Micro-LED显示器以及其在VR/AR、智能手表、google glass、可穿戴电子产品等领域的应用。

 

量子点显示材料和器件

凝胶量子点由于具有非常高的光转换效率(大于85%)、超窄半峰宽(FWHM:小于50 nm)、超高色域(接近BT.2020标准)、可溶液加工等优点,是未来显示技术重要方向之一。该方向主要从事有机/无机量子点发光材料合成、量子点器件制备、量子点光转换材料、量子点显示器及应用开发等方面的研究。重点实现稳定性好、量子效率高、寿命长的新型绿色环保量子点的合成和器件制作。特别注重量子点材料的可加工性和图形化,如量子点墨水的配置,量子点光刻胶的合成等。开发高效、适合于Micro-LED显示的量子点光转换材料。

 

柔性光电子材料和器件

该方向主要研究微纳光电材料(透明导电材料、延展性金属互联材料等)的设计、合成及其柔性光电子器件中的应用。致力于柔性、大面积、可拉伸器件的加工与性能研究。建立大面积柔性光电子器件(特别是柔性显示)的新方法、新工艺,实现柔性光电子器件的低成本制造;探索提高柔性器件稳定性的新方法,改善柔性材料的稳定性和可靠性。

 

访问量:1245